Medicina evolucionista en terapia intensiva: un nuevo paradigma

Autores/as

  • Juan Ignacio Padilla Cuadra Caja Costarricense del Seguro Social, Hospital Dr. Rafael A. Calderón Guardia

DOI:

https://doi.org/10.51481/amc.v60i1.986

Palabras clave:

medicina evolucionistaterapia intensiva, enfermedad, adaptación

Resumen

Los avances tecnológicos han permitido la supervivencia de pacientes críticamente enfermos que hubieran fallecido de manera inevitable. No obstante, muchas de las medidas de este tratamiento intensivo son riesgosas y con un alto costo material y de esfuerzo humano. La medicina evolucionista es una tendencia mundial que propone que un alto número de alteraciones del paciente corresponden a respuestas de adaptación con el objetivo de la supervivencia y no requieren obligatoriamente de su normalización. En el caso del paciente críticamente enfermo, este enfoque es innovador y podría conducir a una medicina crítica orientada al reconocimiento de estas respuestas adaptativas y su modulación. Esta nueva forma de interpretar las manifestaciones de la enfermedad puede tener importantes repercusiones en su tratamiento y una utilización más racional de los recursos. La aplicación de este paradigma puede mejorar los resultados hasta ahora no óptimos, en condiciones como shock séptico, en las que medidas consideradas como lógicas o racionales han sido inefectivas. Se presenta una revisión sobre los principios de esta tendencia, evidencia que la apoya, algunas hipótesis sobre su aplicación en casos concretos y sus limitaciones.

Citas

Coopersmith CM, Wunsch H, Fink MP, Linde-Zwirble WT, Olsen KM, et al. A comparison of critical care research funding and the financial burden of critical illness in the United States. Crit Care Med. 2012;40:1072-1079.

Milbrandt EB, Kersten A, Rahim MT, Dremsizov TT, Clermont G. et al. Growth of intensive care unit resource use and its estimated cost in Medicare. Crit Care Med. 2008;36:2504-2510.

Aberegg SK, O’Brien JM Jr. The normalization heuristic: an untested hypothesis that may misguide medical decisions. Med Hypotheses. 2009;72:745-748.

Williams GC, Nesse RM. The dawn of Darwinian medicine. Q Rev Biol. 1991;66:1-22.

Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet. 2004;364:545-548.

van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, et al.

Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:13591367.

NICE-SUGAR Study Investigators., Finfer S, Chittock DR, Su SY, Blair D, Foster D, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283-1297.

Preiser JC. NICE-SUGAR: the end of a sweet dream? Crit Care. 2009;13:143.

Marik PE, Bellomo R. Stress hyperglycemia: an essential survival response! Crit Care Med. 2013;41:e93-4.

Acker CG, Singh AR, Flick RP, Bernardini J, Greenberg A, et al. A trial of thyroxine in acute renal failure. Kidney Int. 2000;57:293-298.

Takala J, Ruokonen E, Webster NR, Nielsen MS, Zandstra DF, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999;341:785-792.

Mehta RL, Pascual MT, Soroko S, Chertow GM; PICARD Study Group. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288:2547-2553.

Kosaka J, Lankadeva YR, May CN, Bellomo R. Histopathology of Septic Acute Kidney Injury: A Systematic Review of Experimental Data. Crit Care Med. 2016;44:e897-903.

Langenberg C, Bagshaw SM, May CN, Bellomo R. The histopathology of septic acute kidney injury: a systematic review. Crit Care. 2008;12:R38.

Stenvinkel P, Fröbert O, Anderstam B, Palm F, Eriksson M, et al. Metabolic changes in summer active and anuric hibernating free-ranging brown bears (Ursus arctos). PLoS One. 2013;8:e72934.

Stenvinkel P, Jani AH, Johnson RJ. Hibernating bears (Ursidae): metabolic magicians of definite interest for the nephrologist. Kidney Int. 2013;83:207212.

Gomez H, Ince C, De Backer D, Pickkers P, Payen D, et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014;41:3-11.

Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, et al. Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients With Acute Kidney Injury: The ELAIN Randomized Clinical Trial. JAMA. 2016;315:2190-2199

Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Pons B, et al. AKIKI Study Group. Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit. N Engl J Med. 2016;375:122-133.

Barbar SD, Binquet C, Monchi M, Bruyère R, Quenot JP. Impact on mortality of the timing of renal replacement therapy in patients with severe acute kidney injury in septic shock: the IDEAL-ICU study (initiation of dialysis early versus delayed in the intensive care unit): study protocol for a randomized controlled trial. Trials. 2014;15:270.

Fellahi JL, Parienti JJ, Hanouz JL, Plaud B, Riou B, et al. Perioperative use of dobutamine in cardiac surgery and adverse cardiac outcome: propensityadjusted analyses. Anesthesiology 2008;108:979-987.

Shahin J, deVarennes B, Wing Tse C, Amarica DA, Dial S. The relationship between inotrope exposure, six-hour physiological variables, and hospital mortality and renal dysfunction in patients undergoing cardiac surgery. Crit Care 2011;15:R162.

Nielsen DV, Hansen MK, Johnsen SP, Hansen M, Hindsholm K, et al. Health outcomes with and without use of inotropic therapy in cardiac surgery: results of a propensity score-matched analysis. Anesthesiology. 2014;120:1098-1108

Kheterpal S, Fellahi JL. Less is more: a superior clinical strategy? Anesthesiology. 2014;120:1067-8.

Kox M, Pickkers P. “Less is more” in critically ill patients: not too intensive. JAMA Intern Med. 2013;173:1369-1372.

Ganapathy A, Adhikari NK, Spiegelman J, Scales DC. Routine chest x-rays in intensive care units: a systematic review and meta-analysis. Crit Care. 2012;16:R68.

Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, et al.; Canadian Critical Care Clinical Trials Group. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003 Jan 2;348:5-14.

Kress JP, Gehlbach B, LacyM, Pliskin N, Pohlman AS, et al. The long-term psychological effects of daily sedative interruption on critically ill patients. Am J Respir Crit Care Med. 2003;168:1457-1461.

Singer M. Advancing critical care: time to kiss the right frog. Crit Care. 2013;17 Suppl 1:S3.

Borum ML, Lynn J, Zhong Z, Roth K, Connors AF Jr, et al. The effect of nutritional supplementation on survival in seriously ill hospitalized adults: an evaluation of the SUPPORT data. Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments. J Am Geriatr Soc. 2000;48(5 Suppl):S33-8.

Krishnan JA, Parce PB, Martinez A, Diette GB, Brower RG. Caloric intake in medical ICU patients: consistency of care with guidelines and relationship to clinical outcomes. Chest. 2003;124:297-305

Barton R. Nutritional support in critical illness. Nutr Clin Pract 1994; 9:127–

Arabi YM, Aldawood AS, Haddad SH, Al-Dorzi HM, Tamim HM, et al.; PermiT Trial Group. Permissive Underfeeding or Standard Enteral Feeding in Critically Ill Adults. N Engl J Med. 2015;372:2398-2408.

Arabi YM, Aldawood AS, Al-Dorzi HM, Tamim HM, Haddad SH, et al.; PermiT trial group. Permissive Underfeeding or Standard Enteral Feeding in High- and Low-Nutritional-Risk Critically Ill Adults. Post Hoc Analysis of the PermiT Trial. Am J Respir Crit Care Med. 2017;195:652-662.

Wischmeyer PE. Ensuring Optimal Survival and Post-ICU Quality of Life in High-Risk ICU Patients: Permissive Underfeeding Is Not Safe! Crit Care Med. 2015;43:1769-1772

Heyland DK, Dhaliwal R, Jiang X, Day AG. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care 201;15:R268-R268

Islam A. Woo T. Anorexia in goldfish Carassius auratus infected with Trypanosoma danilewskyi. Dis Aquat Org 1991;11:45-48.

Johnson R. W, Curtis S. E., Dantzer R., Bahr J. M, Kelley KW. Sickness behavior in birds caused by peripheral or central injection of endotoxin. Physiology and Behavior 1993;53:343–348.

Povey S, Cotter SC, Simpson SJ, Wilson K. Dynamics of macronutrient selfmedication and illness-induced anorexia in virally infected insects. Journal of Animal Ecology, 2014;83:245-255.

Adamo SA, Fidler TL. Forestell CA. Illness-induced anorexia and its possible function in the caterpillar, Manduca sexta. Brain, Behavior, and Immunity 2007; 21:292-300.

Ayres JS, Schneider DS. The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS Biology 2009; 7:e1000150.

Zaragoza WJ, Krediet CJ, Meyer JL, Canas G, Ritchie KB, et al. Outcomes of infections of sea anemone aiptasia pallida with Vibrio spp. pathogenic to corals,” Microbial Ecology. 2014; 68:388–396.

Guo L, Zheng Z, Ai J, Huang B, Li XA. Hepatic scavenger receptor BI protects against polymicrobial-induced sepsis through promoting LPS clearance in mice. J Biol Chem 2014; 289:14666-14673.

Kanazawa T, Taneike I, Akaishi R, Yoshizawa F, Furuya N, et al. Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem. 2004;279:84528459.

Derde S, Vanhorebeek I, Güiza F, Derese I, Gunst J, et al. Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits. Endocrinology. 2012;153:2267-2276.

Dellinger R. P, Levy M. M., Rhodes A. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock. Intensive Care Medicine 2012;39:165-228.

Rautou P, Cazals–Hatem D, Moreau R, Francoz C, Feldmann G, et al. Acute liver cell damage in patients with anorexia nervosa: A possible role of starvation- induced hepatocyte autophagy. Gastroenterology 2008;135:840-848.

Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–848.

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59– 65.

Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–6583.

Quigley EM. Gut bacteria in health and disease. Gastroenterol Hepatol (NY). 2013;9:560–569.

Kosiewicz MM, Zirnheld AL, Alard P. Gut microbiota, immunity, and disease: a complex relationship. Front Microbiol. 2011;2:180.

Compare D, Coccoli P, Rocco A, Nardone OM, De Maria S, et al. Gut–liver axis: the impact of gut microbiota on nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2012;22:471–476.

Festi D, Schiumerini R, Birtolo C, Marzi L, Montrone L, et al. Gut microbiota and its pathophysiology in disease paradigms. Dig Dis. 2011;29:518–524.

Shimizu K, Ogura H, Hamasaki T, Goto M, Tasaki O et al. Altered gut flora are associated with septic complications and death in critically ill patients with systemic inflammatory response syndrome. Dig Dis Sci. 2011;56:1171–1177.

Alverdy JC, Chang EB. The re-emerging role of the intestinal microflora in critical illness and inflammation: why the gut hypothesis of sepsis syndrome will not go away. Journal of leukocyte biology. 2008; 83:461–466.

Lawley TD, Bouley DM, Hoy YE, Gerke C, Relman DA, et al. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infection and immunity. 2008; 76:403– 416.

Zaborin A, Smith D, Garfield K, Shakhsheer B, Kade M, et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. MBio. 2014; 5:1–14.

Hayakawa M, Asahara T, Henzan N, Murakami H, Yamamoto H, et al. Dramatic changes of the gut flora immediately after severe and sudden insults. Digestive diseases and sciences. 2011; 56:2361–2365

Wu L, Estrada O, Zaborina O, Bains M, Shen L, et al. Recognition of host immune activation by Pseudomonas aeruginosa. Science. 2005; 29:774–777.

Zaborina O, Lepine F, Xiao G, Valuckaite V, Chen Y, Li T, et al. Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa. PLoS Pathog. 2007; 3:e35.

Kohler JE, Zaborina O, Wu L, Wang Y, Bethel C, et al. Components of intestinal epithelial hypoxia activate the virulence circuitry of Pseudomonas. Am J Physiol Gastrointest Liver Physiol. 2005; 288:G1048–G105.

Roux A, Payne SM, Gilmore MS. Microbial telesensing: probing the environment for friends, foes, and food. Cell Host Microbe. 2009;6:115-1124.

Köhler T, Buckling A, van Delden C. Cooperation and virulence of clinical Pseudomonas aeruginosa populations. Proc Natl Acad Sci U S A. 2009;106:6339–6344.

Wang M, Schaefer AL, Dandekar AA, Greenberg EP. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc Natl Acad Sci U S A. 2015; 112:2187–2191.

Meng J, Banerjee S, Li D, Sindberg GM, Wang F, et al. Opioid Exacerbation of Gram-positive sepsis, induced by Gut Microbial Modulation, is Rescued by IL-17A Neutralization. Sci Rep. 2015 3;5:10918.

Banerjee S, Sindberg G, Wang F, Meng J, Sharma U, et al. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol. 2016;9:1418-1428.

Halang P, Toulouse C, Geißel B, Michel B, Flauger B, et al. Response of Vibrio cholerae to the Catecholamine Hormones Epinephrine and Norepinephrine. J Bacteriol. 2015;197:3769-3778.

Pande GS, Suong NT, Bossier P, Defoirdt T. The catecholamine stress hormones norepinephrine and dopamine increase the virulence of pathogenic Vibrio anguillarum and Vibrio campbellii. FEMS Microbiol Ecol. 2014;90:761-9.

Wells JCK, Nesse RM, Sear R, Johnstone RA, et al. Evolutionary public health:

introducing the concept. Lancet. 2017;390:500-509.

Descargas

Publicado

2018-01-04 — Actualizado el 2018-01-04

Versiones

Cómo citar

Cuadra, J. I. P. (2018). Medicina evolucionista en terapia intensiva: un nuevo paradigma. Acta Médica Costarricense, 60(1), 7–14. https://doi.org/10.51481/amc.v60i1.986