Regulación del peso corporal y del apetito

Autores/as

  • Moises Vásquez Machado Universidad de Costa Rica
  • Guido Ulate Montero Universidad de Costa Rica

DOI:

https://doi.org/10.51481/amc.v52i2.640

Resumen

Debido a que la epidemia mundial de obesidad no muestra signos de disminución, se ha hecho necesaria una mejor comprensión de los mecanismos fisiológicos subyacentes a la homeostasis energética, el proceso mediante el cual el consumo energético se iguala al gasto energético a lo largo del tiempo, de manera que los almacenes energéticos corporales, en la forma de tejido adiposo, se mantienen constantes a pesar de las variaciones diarias en la ingesta calórica. El sistema que controla el balance energético posee, a su vez, dos componentes: uno en el corto y otro en el largo plazo. El sistema, en el corto plazo, se encarga de regular el apetito o inicio y finalización de comidas individuales, y responde, fundamentalmente, a hormonas gastrointestinales o señales de saciedad que se acumulan durante la alimentación y contribuyen a terminar la ingesta. Los factores de adiposidad, como la leptina e insulina, son señales que se liberan en proporción a los depósitos energéticos del organismo, y su función involucra la regulación del balance energético por periodos prolongados, por lo que se encargan de la estabilidad del peso corporal. La vía central de las melanocortinas representa un punto crucial de integración de estas señales. Los ligandos de los receptores de melanocortina son sintetizados en poblaciones neuronales discretas dentro del núcleo arcuado del hipotálamo, y ejercen acciones en los dos componentes del balance energético. Sumado a su capacidad de respuesta frente a los niveles de hormonas circulantes, el cerebro también responde directamente a los niveles circulantes de nutrientes. Se han identificado dos proteincinasas que sensan los niveles de nutrientes y funcionan como reguladoras del peso corporal y consumo energético en el hipotálamo: mTOR y AMPK. Además de estos circuitos homeostáticos, los mecanismos hedónicos de alimentación son importantes en la regulación del consumo energético, superando la capacidad reguladora del sistema de balance energético. El objetivo de este artículo es revisar avances recientes en la comprensión de los mecanismos reguladores del peso corporal y el apetito, los cuales han ampliado la visión de la fisiopatología de la obesidad, al tiempo que ofrecen diversas perspectivas para su tratamiento.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Edholm OG. Energy expenditure and calorie intake in young man. Proc Nutr Soc. 1961; 20: 71-76.

Schwartz MW, Woods SC, Porte DJ, Seely RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000; 404: 661-669.

Bessessen DH. Update on obesity. J Clin Endocrinol Metab. 2008; 93: 2027-2034.

Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. National Institutes of Health. Obes Res. 1998; 6(Suppl 2): 51S-209S.

NHANES data on the Prevalence of overweight, obesity and extreme obesity among adults: United States, trends 1960-62 through 20052006. December 2008. En: http://www.cdc.gov/nchs/data/hestat/ overweight/overweight_adult.htm

Aranceta J, Pérez C, Serra L, Ribas L, Quiles J, Vioque J et al. Prevalencia de la obesidad en España: resultados del estudio SEEDO 2000. Med Clin (Barc). 2003; 120: 608-612.

Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994; 372: 425-432.

Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R et al. Identification and expression cloning of a leptin receptor, OB-R. Cell .1995; 83: 1263-1271.

Barsh GS, Farooqi IS, O´Rahilly S. Genetics of body-weight regulation. Nature. 2000; 404: 644-651.

Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and the environment: where do we go from here?. Science. 2003; 293-295.

Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962; 14: 353-362.

Badman MK, Flier JS. The gut and energy balance: Visceral allies in the obesity wars. Science. 2005; 307: 1909-1914.

Woods SC, Seeley RJ, Portre DJ, Schwartz MW. Signals that regulate food intake and energy homeostasis. Science. 1998; 280: 1378-1382.

West DB, Fey D, Woods SC. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol. 1984; 246(5 Pt 2): R776-R787.

Sánchez-Lasheras C, Könner AC, Brüning JC. Integrative neurobiology of energy homeostasis-neurocircuits, signals and mediators. Front Neuroendocrinol 2009; (Epub ahead of print) doi: 10.1016/j. yfrne.2009.08.002.

Lowell BB, Spegelmen BM. Towards a molecular understanding of adaptative thermogenesis. Nature. 2000; 404: 661-671.

Spiegelmen BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001; 104: 531-543.

Levine JA, Eberhardt NL, Jensen MD. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science. 1999; 283: 212-214.

Levine JA, Lanningham-Foster LM, McCrady SK, Krizan AC, Olson LR, Kane PH et al. Interindividual variation in posture allocation:

possible role in human obesity. Science. 2005; 307: 584-586.

Ravussin E. A NEAT way to control weight?. Science. 2005; 307: 530-531.

Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004; 84: 277-359.

Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001; 81: 1097-1142.

Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al. Functional brown adipose tissue in healthy adults. N Engl J Med.

; 360: 1518-1525.

Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009; 360: 1509-1517.

van Marken-Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009; 360: 1500-1508.

Celi FS. Brown adipose tissue-when it pays to be inefficient. N Engl J Med. 2009; 360: 1553-1556.

Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci. 1953; 140: 578-596.

Elmquist JK, Elias CF, Saper CB. From lesions to leptin hypothalamic control of food intake and body weight. Neuron. 1999; 22: 221-232.

Könner AC, Klöckener T, Brüning JC. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiol Behav. 2009; 97: 632-638.

Wynne K, Stanley S, McGowan B, Bloom S. Appetite control. J Endocrinol. 2005; 184: 291-318.

Garfield AS, Lam DD, Marston OJ, Przydzial MJ, Heisler LK. Role of central melanocortin pathways in energy homeostasis. Trends Endocrinol Metab. 2009; 20: 203-215.

Zhou A, Bloomquist BT, Mains RE. The prohormone convertases PC1 and PC2 mediate distinct endoproteolytic cleavages in a strict temporal order during proopiomelanocortin biosynthetic processing. J Biol Chem. 1993; 268: 1763-1769.

Biebermann H, Castañeda TR, van Landeghem F, von Deimling A, Escher F, Brabant G et al, A role for beta-melanocyte-stimulating hormone in human body-weight regulation. Cell Metab. 2006; 3: 141– 146.

Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD, Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature. 1997; 385: 165–168.

Lee YS, Challis BG, Thompson DA, Yeo GS, Keogh JM, Madonna ME et al. A POMC variant implicates beta-melanocyte-stimulating hormone in the control of human energy balance. Cell Metab. 2006; 3: 135–140.

Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science. 1997; 278: 135–138.

Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL. Overexpression of Agrp leads to obesity in transgenic mice. Nat Genet. 1997; 17: 273-

Lu D, Willard D, Patel IR, Kadwell S, Overton L, Kost T et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature. 1994; 27: 799-802.

Nijenhuis WA, Oosterom J, Adan RA. AgRP(83-132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol. 2001; 15: 164–171.

Tolle V, Low MJ, In vivo evidence for inverse agonism of Agoutirelated peptide in the central nervous system of proopiomelanocortindeficient mice. Diabetes. 2008; 57: 86–94.

Haskell-Luevano C, Monck EK. Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regul Pept. 2001; 99: 1–7.

Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ et al. The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci. 2002; 22: 9048–9052.

Sipols AJ, Baskin DG, Schwartz MW. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes. 1995; 44: 147–151.

Schwartz MW. Inhibition of hypothalamic neuropeptide Y gene expression by insulin, Endocrinology. 1992; 130: 3608–3616.

Kitamura T, Feng Y, Kitamura YI, Chua SC, Xu AW, Barsh GS et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med. 2006; 12: 534-540.

Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron. 1999; 23: 775-786.

Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997; 88: 131-141.

Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest. 2000; 106: 271279.

Hentges ST, Nishiyama M, Overstreet LS, Stenzel-Poore M, Williams JT, Low MJ. GABA release from proopiomelanocortin neurons, J Neurosci. 2004; 24: 1578–1583.

Horvath TL, Bechmann I, Naftolin F, Kalra SP, Leranth C. Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Res. 1997; 756: 283–286.

Cowley MA, Smart JL, Rubinstein M, Cerdán MG, Diano S, Horvath TL et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001; 411: 480–484.

Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci. 2008; 11: 998–1000.

Flier JS, Harris M, Hollenberg AN. Leptin, nutrition, and the thyroid: the why, the wherefore, and the wiring. J Clin Invest. 2000; 105: 859861.

Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature. 1998; 17: 670-674.

Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996; 334: 292295.

Ahima RS, Prabakara D, Mantzoros C, Qu D, Lowell B, MaratosFlier E et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996; 82: 250-252.

Chua SC, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science. 1996; 271: 994–996.

Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996; 84: 491-495.

Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995; 269: 543-546.

Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998; 395: 763-770.

Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. 1999; 282: 1568–1575.

Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell. 2004; 116: 337-350.

Van Heek M, Compton DS, France CF, Tedesco RP, Fawzi AB, Graziano MP et al. Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest. 1997; 99: 385-390.

Hileman SM, Pierroz DD, Masuzaki H, Bjorbaek C, El-Haschimi K, Banks WA et al. Characterization of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity. Endocrinology. 2002; 143: 775-783.

Coll AP, Farooqui S, O´Rahilly S. The hormonal control of food intake. Cell. 2007; 129: 251-262.

Cohen P, Zhao C, Cai X, Montez JM, Rohani SC, Feinstein P et al. Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest. 2001; 108: 1113–1121.

de Luca C, Kowalski TJ, Zhang Y, Elmquist JK, Lee C, Kilimann MW et al. Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron-specific LEPR-B transgenes. J Clin Invest. 2005; 115: 3484–3493.

Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G et al. Melanocortin receptors in leptin effects. Nature. 1997; 390: 349.

Bjørbaek C, Uotani S, da Silva B, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem. 1997; 272: 32686–32695.

Baumann H, Morella KK, White DW, Dembski M, Bailon PS, Kim H et al. The full-length leptin receptor has signalling capabilities of interleukin 6-type cytokine receptors. Proc Natl Acad Sci USA. 1996; 93: 8374-8378.

Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature. 2003; 421: 856–859.

Woods SC, Lotter EC, Mckay LD, Porte DJ. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight in baboons. Nature. 1979; 282: 503-505.

Bruning JC, Gautam D, Burks DJ, Gillete J, Schubert M, Orban PC et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000; 289: 2122-2125.

Backer JM, Myers MG, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M et al. Phosphatydilinositol 3´-kinase isactivated by association with IRS-1 during insulin stimulation. EMBO J. 1992; 11: 3469-3479.

Kohn AD, Kovacina KS, Roth RA. Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. EMBO J. 1995; 14: 2132-2147.

Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999; 96: 857–868.

Biggs WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA. 1999; 96:7421–7426.

Belgardt BF, Husch A, Rother E, Ernst MB, Wunderlich FT, Hampel B et al. PDK1 deficiency in POMC-expressing cells reveals FOXO1dependent and -independent pathways in control of energy homeostasis and stress response. Cell Metab. 2008; 7: 291–301.

Kim MS, Pak YK, Jang PG, Namkoong C, Choi YS, Won JC et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci. 2006, 9: 901–906.

Niswender KD, Gallis B, Blevins JE, Corson MA, Schwartz MW, Baskin DG. Immunocytochemical detection of phosphatidylinositol 3-kinase activation by insulin and leptin. J Histochem Cytochem. 2003; 51: 275-283.

Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG, Seeley RJ, Schwartz MW. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes. 2003; 52: 227-231.

Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers MG, Schwartz MW. Intracellular signaling. Key enzyme in leptin induced anorexia. Nature. 2001; 413: 794-795.

Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest. 2007; 117:13-23.

Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999; 402: 656-660.

Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000; 407: 908-913.

Cummings DE, Purnell JQ, Fravo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001; 50: 1714-1719.

Cummings DE, Weigle DS, Fravo RS, Breen PA, Ma MK, Dellinger EP et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002; 23: 1623-1630.

Neary NM, Small CJ, Wren AM, Lee JL, Druce MR, Palmieri C et al. Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J Clin Enocrinol Metab. 2004; 89: 2832-2836.

Levin BE, Routh VH, Kang L, Sanders NM, Dunn- Meynell AA. Neuronal glucosensing: what do we know after 50 years?. Diabetes. 2004; 53: 2521-2528.

Marty N, Dallaporta M, Thorens B. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology. 2007; 22: 241-251.

McCrimmon RJ, Shaw M, Fan X, Cheng H, Ding Y, Vella MC et al. Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes. 2008; 57: 444-450.

Lam TK, Schwartz GJ, Rossetti L. Hypothalamic sensing of fatty acids. Nat Neurosci. 2005; 8: 579-584.

Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC et al. Hypothalamic mTOR signaling regulates food intake. Science. 2006; 312: 927-930

Kola B. Role of AMP-activated protein kinase in the control of appetite. J Neuroendocrinol. 2008; 20: 942-951.

Flier JS. Regulating energy balance: the substrate strikes back. Science. 2006; 312: 861-864.

Marshall S. Role of Insuline, adipocyte hormones, and nutrientsensing pathways in regulating fuel metabolism and energy homeostasis: A nutritional perspective of diabetes, obesity, cancer. Sci STKE. 2006; 1: 1-10.

Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004; 428: 569-574.

Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003; 115: 577-590.

Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron. 2002; 36: 199-211.

Isoldi KK, Aronne LJ. The challenge of treating obesity: the endocannabinoid system as a potential target. J Am Diet Assoc. 2008; 108: 823-831.

Jamshidi N, Taylor DA. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol. 2001; 134: 1151-1154.

Cota D, Marsicano G, Tshop M, Grubler Y, Flaschskamm C, Schubert M et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest. 2003; 112: 423-431.

Di Marzo V, Goparaju SK, Wang L, Liu J, Palmiter RD, Sugiurak T et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. 2001; 410: 822-825.

Jo YH, Chen YJ, Chua SC Jr, Talmage DA, Role LW. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron. 2005; 48: 1055-1066.

Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997; 387: 90-94.

Thomas SA, Palmiter RD. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature. 1997; 1: 94-97.

Cooke D, Bloom S. The obesity pipeline: current strategies in the development of anti-obesity drugs. Nat Rev Drug Discov. 2006; 5: 919-931.

Xu Y, Jones JE, Kohno D, Williams KW, Lee CE, Choi MJ et al. 5HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron. 2008; 60: 582-589.

Heisler LK, Cowley MA, Tecott LH, Fan W, Low ML, Smart JL et al. Activation of central melanocortin pathways by fenfluramine. Science. 2002, 297: 609-611.

Richard D, Guesdon B, Timofeeva E. The brain endocannabinoid system in the regulation of energy balance. Best Pract Res Clin Endocrinol Metab. 2009; 23: 17-32.

Woods SC. The endocannabinoid system: mechanisms behind metabolic homeostasis and imbalance. Am J Med. 2007; 120(2 Suppl 1): S9-S17.

Descargas

Publicado

2010-03-10

Cómo citar

Vásquez Machado, M., & Ulate Montero, G. (2010). Regulación del peso corporal y del apetito. Acta Médica Costarricense, 52(2), 79–89. https://doi.org/10.51481/amc.v52i2.640